1	$\pi \times 2.5^2 \times 15 \ (= 93.75\pi = 294.5243)$		5	M1	for using the formula for volume of cylinder
	$21.5 = \frac{m}{"294.5243"}$			M1	for using $d = \frac{m}{v}$ with their
					intended volume v
	$(m =) 21.5 \times `294.5243` (= 6332.272692)$			M1	for rearranging for $m = d \times v$
	'6332.27269' ÷ 1000 × 5 (=31.661) or '6332.27269' ÷ 6 ÷ 1000 (= 1.055) or '6332.27269' × 5 and 30 × 1000 (=30 000) or 30 ÷ ('6332.27269' ÷ 1000) (= 4.7376)			M1	for a correct calculation that would enable a conclusion to be made based on mass
		No and correct comparable figure(s)		A1	for No oe and (31.6 to 31.7 or 1.05 to 1.06 or 4.70 to 4.74) seen
					Total 5 marks

Alterna	tive Mark Scheme for Q1				
1	$\pi \times 2.5^2 \times 15 \ (= 93.75\pi = 294.5243)$		5	M1	for using the formula for volume of cylinder
	$21.5 = \frac{30000}{v} \text{ or } 21.5 = \frac{30000 \div 5}{v}$			M1	for using $d = \frac{m}{v}$ with given d and m
	$(v =) \frac{30000}{21.5} \ (=1395.34)$			M1	for rearranging for $v = \frac{m}{d}$ for either
	or $(v =) \frac{30000}{21.5 \times 5} (=279.069)$				one nugget, or all five nuggets.
	"1395.34" and "294.52" × 5 (= 1472.62) or "279.06" and "294.52"			M1	for correct calculations that would enable a conclusion to be made based on volumes
		No and correct comparable figure(s)		A1	awrt 3sf
					Total 6 marks

2	$\sqrt{\frac{300}{108}}$ or $\sqrt{\frac{108}{300}}$ or $\sqrt{\frac{25}{9}}$ oe or $\sqrt{\frac{9}{25}}$ oe or			M1	for a correct linear scale factor (fraction or ratio) or
	$\left(\frac{300}{108}\right)^3 = \left(\frac{V}{135}\right)^2 \text{ oe}$				for the use of $\left(\frac{A_1}{A_2}\right)^3 = \left(\frac{V_1}{V_2}\right)^2$
	$135 \times \left(\sqrt{\frac{300}{108}}\right)^3$ oe or			M1	
	$\sqrt{\frac{300^3}{108^3} \times 135^2}$ or $\sqrt{390625}$				
		625	3	A1	
,					Total 3 marks

3	$\pi \times 3^2 \times h = 72\pi$ oe			M1	Allow use of 3.14 or $\frac{22}{7}$ for π and use of 226 for 72π
	$h = 72\pi \div (\pi \times 3^2) \text{ oe or } h = 8$			M1	method to isolate <i>h</i> (may be seen in several stages)
	$2 \times \pi \times 3^2$ (= 18 π or 56.54) or $2 \times \pi \times 3 \times$ "8" oe (= 48 π or 150 - 151)			M1	method to find the area of the two circles or curved surface area – use of their <i>h</i> , dep on 1st M1 (NB may get this mark for total area of 2 circles with no previous marks awarded)
	$2 \times \pi \times 3^2 + 2 \times \pi \times 3 \times \text{``8''} \text{ oe } (= 66\pi)$			M1	method to find total surface area ft their h dep on 1st M1, including intention to add, to find the total surface area
		207	5	A1	accept 207-208
					Total 5 marks

4	$\boxed{\frac{1}{3} \times \pi \times r^2 \times 2h \left(= \frac{2}{3} \pi r^2 h \right) \text{ OR } \frac{1}{3} \times \pi \times (0.5r)^2 \times h \left(= \frac{1}{12} \pi r^2 h \right)}$			M1	for finding the volume of the small or large cone
				M1	(dep) method to find the volume of the frustum (condone missing brackets)
	$\left\ \frac{2}{3}\pi r^2 h'' - \frac{1}{12}\pi r^2 h'' - \frac{4\pi r^3}{3} \right\ $			M1	equating volume of frustum and sphere (must be correct including brackets)
	e.g. $\frac{7}{12}\pi r^2 h = \frac{4\pi r^3}{3}$			M1	for a correct simplified formula (1 term on each side)
		$\frac{7}{16}h$	5	A1	accept 0.4375h
					Total 5 marks

5	$\frac{h}{2} \times (7+12) \times 10 = 608$ oe		3	M2	M1 for $\frac{h}{2} \times (7 + 12) \times 10$
		6.4		A1	
					Total 3 marks

6	$(ASF =) \frac{13^2}{9^2} \text{ or } \frac{9^2}{13^2}$		4	M1	Correct SF for area.
	92 132				Accept 1.44^2 (= 2.07 or 2.09) or
					better for ASF
					or 0.69^2 (= 0.47 or 0.48) or better
	<u>-</u>				for ASF
	$\operatorname{eg} A + "(\frac{13^2}{9^2})" A = 1800$			M1ft	Dep on previous M1
	eg " $\frac{250}{81}$ " $A = 1800$			M1ft	
		583.2		A1	Awrt 583
					Total 4 marks

7	$0.14 = \frac{56}{v^2}$ oe or $56 \div 0.14 (= 400)$		4	M1 for using the given formula correctly
	$\sqrt{\frac{56}{0.14}}$ or $\sqrt{400'}$ (=20)			M1 for a method to find w
	'20' × '20' × '20' oe			M1 (dep on M2) for a method to find the volume of the cube
		8000		Al
				Total 4 marks

8	$1600 = \frac{1}{3} \times \pi \times r^2 \times 25 \text{ oe}$		6 M1	for substituting into volume formula for cone correctly and equating to 1600
	eg $r = \sqrt{\frac{1600}{\frac{1}{3}\pi \times 25}}$ or $r = \sqrt{\frac{192}{\pi}} (= \sqrt{61.1(154)} = 7.8176)$		M1	dep for correct rearrangement of volume formula for r
	$l = \sqrt{"7.817"^2 + 25^2} (= \sqrt{686.1154} = 26.193)$		M1	Dep on M2 correct method to find slant height of cone (radius of sector)
	$2 \times \pi \times \text{``7.817''} (= 49.1196)$ or $\pi \times \text{``7.817''} \times \text{``26.193''} (= 643.315)$		M1	for using $C = 2\pi r$ oe using figures from correct method or for using $A = \pi r l$ using figures from correct method
	"49.1196" = $2 \times \pi \times$ "26.193"× $\frac{x}{360}$ or "643.315" = $\pi \times$ "26.193" ² × $\frac{x}{360}$		M1	for using arc length = $2\pi r \times \frac{x}{360}$ or for using area of sector = $\pi r^2 \times \frac{x}{360}$
		107°	A1	for 107° - 108°
				Total 6 marks

9	$[x =]\cos^{-1}\left(\frac{7.4}{11.2}\right) (= 48.64) \text{ or}$ $[y =]\sin^{-1}\left(\frac{7.4}{11.2}\right) (= 41.35) \text{ or } \sin^{-1}\left(\frac{7.4\sin 90}{11.2}\right)$		5	M1	A correct first stage to finding the perpendicular height of the triangular cross section
	eg $\sqrt{11.2^2 - 7.4^2}$ (= 8.407) or [$h =]\sin^4 48.64$ "×11.2 or $\tan^4 48.64$ "×7.4(= 8.407) or			M1	oe eg $h = \frac{11.2 \sin"48.64"}{\sin 90}$
	[$h =]\cos"41.35" \times 11.2$ or $\frac{7.4}{\tan"41.35"} (=8.407)$ eg $7.4 \times "8.407" \div 2 (= 31.10)$ or $7.4 \times "8.407" \times 15 (= 933.19)$			M1	for method to find area of cross section or volume of cuboid
	eg "31.10" × 15 (= 466.59) or "933.19" ÷ 2 (= 466.59)			M1	complete method to find volume of the prism
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	467		A1	accept 466 – 467 SCB2 (if M0 awarded) for $0.5 \times 7.4 \times \sqrt{11.2^2 + 7.4^2} \times 15$ (= 745) or SCB1 (if M0 awarded) for $7.4 \times \sqrt{11.2^2 + 7.4^2} \times 15$ (= 1490) or $0.5 \times 7.4 \times \sqrt{11.2^2 + 7.4^2}$ (=49.6) or $0.5 \times 7.4 \times 11.2 \times 15$ (= 621.6) or 622
					Total 5 marks

10	a	$(x =) 270 \div (12 \times 5) (= 4.5)$ oe		3	M1	
		$\pi \times 4.5^2 \times 2 \times 4.5 = 182.25\pi$ oe)			M1	ft dep on M1
			573		A1	accept 572 - 573
	b		1 000 000	1	B1	or $(1 \times) 10^6$ or (one or 1) million oe
						Total 4 marks

11	e.g. 30 × 20 × 125 (= 75 000) or 85 × 40 × 125 (= 425 000) or (60×30+(85-30)×40)×125(= 500 000) oe		4	M1	for a method to find the volume of water already pumped out or the volume of water left or the total volume of the container
	"75 000" ÷ 1.5 (= 50 000) or "75 000" ÷ 90 (= 833.3 or $\frac{2500}{3}$) or "425000" ÷ "75000" (= 5.66 or $\frac{17}{3}$) or "500000" ÷ "75000" (= 6.66 or $\frac{20}{3}$)			M1	M2 for $\frac{"425000"}{"75000"} \times 1.5$ oe (= 8.5) or $\frac{"500000"}{"75000"} \times 1.5$ oe (= 10)
	"425 000" ÷ "50 000" (= 8.5) or "425 000" ÷ ("833.3" × 60) oe (= 8.5) or "5.66" × 1.5 (= 8.5) or "6.66" × 1.5 (= 10)	20 30		M1	Allow 8 30 (pm)
		20 30		711	Total 4 marks

12	e.g. $(V =) \frac{1}{2} \left(\frac{4}{3} \pi x^3 \right) + \pi x^2 \left(20 - 4x \right)$ or $(V =) \frac{2}{3} \pi x^3 + 20 \pi x^2 - 4 \pi x^3$		5	M1	for a correct expression
	e.g. $\frac{1}{3}\pi y = \frac{1}{2}\left(\frac{4}{3}\pi x^3\right) + \pi x^2 (20 - 4x)$ or $\frac{1}{3}\pi y = \frac{2}{3}\pi x^3 + 20\pi x^2 - 4\pi x^3$			M1	for a correct equation
	$y = 60x^2 - 10x^3$ oe			A1	for writing y in terms of x
	e.g. $\left(\frac{dy}{dx}\right) = 120x - 30x^2 = 0$ oe			M1	for differentiating their $ax^2 + bx^3$ and equating to 0
		320		A1	(dep on M3) cao
, i					Total 5 marks

13	(a) $\left(\frac{37+28}{2}\right) \times 20 (=650)$		4	M1	Correct method to find area of trapezium
	$\sqrt{4.5^2 + 20^2}$ (= 20.5) oe			M1	Correct method to find slanted edge AB oe
	2 × '650' + 2 × '20.5' × 24 + 37 × 24 + 28 × 24 (2 × '650' + 2 × 492 + 888 + 672)			M1	method to find the sum of the surface areas of at least 4 correc faces (ft their area of trapezium) ignore incorrect areas
		3844		A1	
14	4 2		6	M1	for finding the volume of
14	eg $\frac{4}{3}\pi r^3 \div 2(=\frac{2}{3}\pi r^3)$ oe		0	IVII	for finding the volume of hemisphere
	eg $\frac{1}{3}\pi(kr)^2kh - \frac{1}{3}\pi r^2h(=\frac{1}{3}\pi r^2h(k^3-1))$ oe			M1	for finding the volume of the frustum
	eg $\frac{1}{3}\pi r^2 h(k^3 - 1) + \frac{2}{3}\pi r^3$ or $\frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3$ oe			M1	for a correct expression for the volume of Solid A or Solid B
	eg $\frac{1}{3}\pi r^2 h(k^3 - 1) + \frac{2}{3}\pi r^3 = 6\left(\frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3\right)$ oe			M1	for a correct equation using the volumes of Solid A and Solid B (π could be cancelled out)
	eg $h(k^3 - 1) - 6h = 12r - 2r$ oe			M1	for simplifying to a point where the h terms are on one side of an equation and other terms the other side – must be correct
	NB: note that simplest form was not required	$\frac{10r}{k^3 - 7}$		A1	oe eg $\frac{4r - \frac{2}{3}r}{1 + \frac{3}{3} + \frac{2}{3}1}$

15	$580\pi = \pi \times 20 \times l$ oe		5	M1 for correct substitution into $A = \pi r l$
	$(l=)\frac{580\pi}{20\pi}(=29)$			M1
	$\sqrt{"29"^2 - 20^2} \left(= \sqrt{441} = 21 \right)$			M1
	$\left[\frac{1}{2} \times \frac{4}{3} \times \pi \times 20^{3} \right] + \left(\frac{1}{3} \times \pi \times 20^{2} \times "21" \right) \text{ or }$ $\frac{16000}{3} \pi + \frac{8400}{3} \pi \text{or }$ $\frac{16000}{3} \pi + 2800\pi$			M1 for a complete method (Award M4 for 8133.3 if $\frac{24400}{3}$ is not seen)
·		$\frac{24400}{3}$		A1 8133. $\dot{3}$ or 8133 $\frac{1}{3}$ (as exact form was
				requested)
				SC B4 for an answer of 25551(.62) if no method shown
				Total 5 marks

16			3	Ml	For area of 2 different faces (ie not 2 triangles)
	$0.5 \times 4.8 \times 3.6$ (= 8.64) oe or 4.8×3.6 if clear intention for this to be 2 triangles 7×3.6 (= 25.2) 7×4.8 (= 33.6) 7×6 (= 42) (all measurements with intention to add)			M1	For adding together 5 areas, at least 4 of which are correct NB: $(3.6 + 4.8 + 6) \times 7 = 100.8$ is 3 faces
	Correct answer scores full marks (unless from obvious incorrect working)	118		A1	118.1 or 118.08
					Total 3 marks

	incorrect normally				Total 3 marks
	Correct answer scores full marks (unless from obvious incorrect working)	8.3		A1	accept 8.29 - 8.31
	eg $\frac{2000}{[\text{vol A}]}$ or $\frac{3375}{450}$ (= 7.5 oe) or $\frac{2000 + 3375}{[\text{vol A}] + 450}$			M1	(indep) for method to find the density of Solid A , B or C , allow use of their volume for Solids A and C
17	eg $\pi \times 3^2 \times 7 \ (= 63\pi \text{ or } 197.9)$		3	M1	for method to find the volume of Solid A

18	$\sqrt{\frac{3600}{625}} \text{ or } \frac{12}{5} \text{ oe or } 2.4 \text{ or } 12:5 \text{ oe}$ $\text{or } \sqrt{\frac{625}{3600}} \text{ or } \frac{5}{12} \text{ oe or } 0.416 \text{ or } 5:12 \text{ oe}$ $\text{or } \frac{3600^3}{625^3} = \frac{(\text{vol of statue})^2}{750^2} \text{ oe}$ $\text{or } \frac{3600}{625} = \frac{(\text{vol of statue})^{\frac{2}{3}}}{750^{\frac{2}{3}}} \text{ oe}$		3	M1	for a correct length scale factor or a correct length ratio or setting up a correct equation involving the volume of the statue
	eg $750 \times \left(\frac{12}{5} \right)^3$ oe or $750 \div \left(\frac{5}{12} \right)^3$ oe			M1	(dep on M1) for a correct method to work out the volume of the statue
	$\mathbf{or} \sqrt{\frac{3600^3 \times 750^2}{625^3}} \text{oe or} \left(\frac{3600 \times 750^{\frac{2}{3}}}{625}\right)^{\frac{3}{2}} \text{ oe}$				
	Correct answer scores full marks (unless from obvious	10 368		A1	cao
	incorrect working)				Total 3 marks
					1 Otal 3 Marks

19	$eg k \times \frac{1}{3} \pi r^{2} h = \frac{4}{3} \pi r^{3} \text{ or } k \times \frac{1}{3} \pi r^{2} h = \frac{4}{3} \pi r^{3}$ $or k \times \frac{1}{3} \pi r^{2} h = \frac{4}{3} \pi r^{3} \text{ or } k \times h = 4r$		6	M1	for setting up an equation with volumes and some simplification (minimum of 2 terms simplified)
	$h = \frac{4r}{k}$			M1	for finding h in terms of r and k in its simplest form (may be seen at a later stage)
	eg $l^2 = r^2 + \left(\frac{4r}{k}\right)^2$ or $l = \sqrt{r^2 + \left(\frac{4r}{k}\right)^2}$			M1	for correct substitution into Pythagoras' theorem (accept substitution of $h = \frac{4\pi r}{\pi k}$)
	eg $l = r\sqrt{1 + \frac{16}{k^2}}$ or $l = r\sqrt{\frac{k^2 + 16}{k^2}}$ or $l = r\frac{\sqrt{k^2 + 16}}{k}$			M1	for rearranging and removing the r from the square root (may be seen at a later stage)
	$\operatorname{eg} \pi r^2 \left(\sqrt{1 + \frac{16}{k^2}} + 1 \right)$			M1	for a correct expression for surface area in terms of r and k with πr^2 removed as a factor
	Correct answer scores full marks (unless from obvious incorrect working)	$\pi r^2 \left(\frac{k + \sqrt{k^2 + 16}}{k} \right)$		A1	
					Total 6 marks

20	$r = \sqrt{\frac{49\pi}{4\pi}}$ oe (= 3.5)		3	M1	
	[volume =] $\frac{4}{3} \times \pi \times "3.5"^3$			M1	
	Correct answer scores full marks (unless from obvious incorrect working)	180		A1	awrt 180
					Total 3 marks

21	$\sin 32 = \frac{(BC)}{50} \text{ or } \cos 32 = \frac{(CD)}{50} \text{ or }$		6	M1
	$\frac{(BC)}{\sin 32} = \frac{50}{\sin 90}$ oe or $\frac{(CD)}{\sin (90 - 32)} = \frac{50}{\sin 90}$ oe			
	$(BC =) 50 \sin 32 (= 26.4(959)) \text{ or}$			M1 for finding BC or AD Can be written on the diagram
	$(BC =) \sqrt{50^2 - (50\cos 32)^2} (= 26.4(959)) \text{ or}$			
	$(BC =) \sqrt{50^2 - "42.4"^2} (= 26.4(998)) \text{ or}$			
	$(BC =) \frac{50}{\sin 90} \times \sin 32 \text{ oe}$			
·	$(CD =)50\cos 32 (= 42.4(024))$ or			M1 for finding <i>CD</i> or <i>BA</i> Can be written on the diagram
	$(CD =)\sqrt{50^2 - (50\sin 32)^2} (= 42.4(024))$ or			can be written on the diagram
	$(CD =) \sqrt{50^2 - "26.4"^2} (= 42.4(622))$ or			
	$(CD =) \frac{50}{\sin 90} \times \sin(90 - 32)$			
	$(r =)$ "42.4(024)" ÷ 2π (= 6.74(855))			M1 for finding the radius of the cylinder
	$(V=) \pi \times \text{``}6.74(855)$ '' ² × ''26.4(959)''			M1 dep on previous M mark for the use
				of $\pi r^2 h$
	Correct answer scores full marks (unless from obvious incorrect working)	3790		A1 allow answers in the range 3737 – 3794
				Accept answers in standard form
				Total 6 marks

22	$(39 \div 3)^2 + 39^2$ or $1521 + 169 (= 1690)$		5	M1	8	squares – may be seen
					embedded in a calculation	
	$\sqrt{45^2 + (39 \div 2)^2}$ (= 49.043)			M1		M2 for eg
	·				perpendicular slant height	
	or $\sqrt{15^2 + \left(\frac{39 \div 3}{2}\right)^2}$ (= 16.347) oe				of either pyramid	$(39-13)^2$
	2) (2) (2)					$\sqrt{\left(\frac{39-13}{2}\right)^2 + (45-15)^2}$
-	2		-	N (1	for finding the	$(=\sqrt{1069}=32.695)$
	$\frac{2}{3}$ "49.043" or 2×"16.347" (= 32.695) oe			M1	for finding the perpendicular slant height	
					of the frustum OR the area	
	OR $\frac{1}{2} \times 13 \times "16.347" (= 106.260)$				of 1 or 4 triangular faces for	
					either pyramid	
	or $4 \times \frac{1}{2} \times 13 \times "16.347" (= 425.042)$					
	or $\frac{1}{2} \times 39 \times "49.043" (= 956.345)$					
	or $4 \times \frac{1}{2} \times 39 \times "49.043" (= 3825.381)$					
	2					
	$(39 \div 3)^2 + 39^2 + 4 \times \frac{(39 \div 3) + 39}{2} \times "32.695"$			M1	correct calculation for total su	ırface area
	_					
	OR $(39 \div 3)^2 + 39^2 + "3825.381" - "425.042"$					
	Correct answer scores full marks (unless from	5090	-	Al	accept 5090 – 5091	
	obvious incorrect working)			***	p	
					,	Total 5 marks

23	$(x^2 =) \frac{13 + 6\sqrt{5}}{2\sqrt{5} - 3}$		4	M1	expression for x^2
	$\frac{13+6\sqrt{5}}{2\sqrt{5}-3} \times \frac{2\sqrt{5}+3}{2\sqrt{5}+3} \qquad \text{or} \qquad \frac{13+6\sqrt{5}}{2\sqrt{5}-3} \times \frac{-2\sqrt{5}-3}{-2\sqrt{5}-3}$			M1	dep on previous M1 showing a correct product to rationalise the denominator (must be correct x^2)
	$eg \frac{13+6\sqrt{5}}{2\sqrt{5}-3} \times \frac{2\sqrt{5}+3}{2\sqrt{5}+3} = \frac{99+44\sqrt{5}}{11}$ or $eg \frac{13+6\sqrt{5}}{2\sqrt{5}-3} \times \frac{2\sqrt{5}+3}{2\sqrt{5}+3} = \frac{26\sqrt{5}+39+60+18\sqrt{5}}{20-9}$ or $eg \frac{13+6\sqrt{5}}{2\sqrt{5}-3} \times \frac{2\sqrt{5}+3}{2\sqrt{5}+3} = \frac{26\sqrt{5}+39+12(\sqrt{5})^2+18\sqrt{5}}{(2\sqrt{5})^2-3^2}$ Working required	2+√5		M1	dep on previous M1 continuing the expansion of the product on the numerator and denominator – maybe one of these forms or a combination of forms dep on M3 accept $a = 2$, $b = 5$
	norming required	2+√5		211	dep on his decept a 2, b 3
					Total 4 marks